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Abstract Most existing methods of global optimization for generalized geometric pro-
gramming (GGP) actually compute an approximate optimal solution of a linear or convex
relaxation of the original problem. However, these approaches may sometimes provide an
infeasible solution, or far from the true optimum. To overcome these limitations, a robust
solution algorithm is proposed for global optimization of (GGP) problem. This algorithm
guarantees adequately to obtain a robust optimal solution, which is feasible and close to the
actual optimal solution, and is also stable under small perturbations of the constraints.

Keywords Generalized geometric programming · Robust solution · Global optimization ·
Essential optimal solution ·Monotonic optimization

1 Introduction

Generalized geometric programming (GGP) is a special nonlinear programming. Its great
impact has been in the areas of

(1) Engineering design [1–4];
(2) Economics and statistics [5–8];
(3) Manufacturing [9,10];
(4) Chemical equilibrium [11,12].

(GGP) problem can be formulated as follows:

(GGP) min F0(y)

s.t. Fm(y) ≥ 0, m = 1, . . . , M,

y ∈ �0 = {y | 0 < yl
i ≤ yi ≤ yu

i <∞, yl
i �= yu

i , i = 1, . . . , n0},
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where

Fm(y) =
Tm∑

t=1

δmt

n0∏

i=1

yηmti
i , for each m = 0, 1, . . . , M,

and δmt are arbitrary real constant coefficients, ηmti are arbitrary real constant exponents. In
general, formulation (GGP) corresponds to a nonlinear optimization problem with nonconvex
objective function and constraints.

Though local optimization approaches for solving (GGP) problem are ubiquitous, the
global optimization algorithm based on the characteristics of (GGP) problem is scarce. Mar-
anas and Floudas [11] proposed such a global optimization algorithm based on the exponential
variable transformation of (GGP), the convex relaxation and branching and bounding on some
rectangle region. Recently, using differential linear relaxation, several authors (for example,
Shen and Zhang [13], Wang and Zhang [14]) presented the corresponding branch and bound
algorithms for solving (GGP) problem, respectively. However, as has been shown in Ref.
[15], these methods mentioned above may sometimes provide an infeasible solution which
cannot be accepted as an approximate optimal solution in any reasonable sense. This poses
the necessity to re-examine the approximation concept so far commonly used and stresses
the importance of robustness for practical implementation of global optimization methods.
Motivated by these consideration, a robust approach to (GGP) problem will be proposed
below.

The goal of this research is two-fold. First, we present a transformation of the problem
based on the characteristics of (GGP) problem. Thus the original problem (GGP) is equiva-
lently reformulated as a monotonic optimization problem (GGP3) in the form studied in recent
papers [16,17]. That is to say, in the monotonic optimization problem (GGP3) the objective
function is increasing and all the constrained functions can be denoted as the difference of
two increasing functions. Second, by using a special procedure of monotonic optimization
problem (GGP3) (see Ref. [16,17]), we propose a robust solution algorithm for (GGP) prob-
lem based on a robust approach developed in Ref. [15] but more easily implementable. This
is because it requires less nonlinear computations, and main computation work is to solve
the linear programming. Compared with most existing methods that are based on solving a
refined linear or convex relaxation of the original problem (GGP), this robust approach con-
sists in seeking the best nonisolated feasible solution. This solution, i.e., the robust optimal
solution which is computed by the proposed approach is adequately guaranteed to be feasible
and to be close to the actual optimal solution. Hence, the proposed approach can find a more
appropriate approximate optimal solution which is also stable under small perturbations of
the constraints. This stresses the importance of robustness for practical implementation of
global optimization methods.

The remainder of this paper is organized as follows. The next section converts the (GGP)
problem into a monotonic optimization problem. Section 3 introduces the concept of essential
optimality (see, e.g., Ref. [15]). In addition, a method for finding such an essential optimal
solution is presented in this section. The rectangular branching process, the reducing process
and the upper bounding process used in this approach are defined and studied in Sect. 4.
Section 5 incorporates this approach into an algorithm for solving (GGP) to be referred to a
robust solution algorithm, and shows the convergence property of the algorithm. In Sect. 6,
we give the results of solving some numerical examples with the algorithm.

123



J Glob Optim (2008) 41:593–612 595

2 Equivalent monotonic reformulation

A function f : Rn → R is said to be increasing if f (x ′) ≤ f (x) for all x ′, x ∈ Rn satisfying
x ′ ≤ x , i.e. x ′i ≤ xi , ∀i = 1, . . . , n. Any function that can be decomposed into the difference
of two increasing functions is said to be a d.m. function.

In the following we show that any (GGP) problem can be transformed into a monotonic
optimization problem with increasing objective function and d.m. constrained functions. To
see how such a reformulation is possible, we first consider each constraint of (GGP). Let

ηm = max{|ηmti | | t = 1, . . . , Tm, i = 1, . . . , n0}, m = 1, . . . , M,

then for any y ∈ �0, it follows from each constraint of (GGP) that

Fm(y) ·
n0∏

i=1

yηm
i =

Tm∑

t=1

δmt

n0∏

i=1

yηmti+ηm
i ≥ 0, m = 1, . . . , M.

By changing the notation, one can thus convert (GGP) into the form

(GGP1) min G0(y)

s.t. Gm(y) ≥ 0, m = 1, . . . , M,

y ∈ �0 = {y | 0 < yl
i ≤ yi ≤ yu

i <∞, i = 1, . . . , n0},

where

Gm(y) =
Tm∑

t=1

δmt

n0∏

i=1

yγmti
i , m = 0, 1, . . . , M

with γ0ti = η0ti and γmti = ηmti + ηm > 0, for m = 1, . . . , M .
Moreover, by applying the following exponent transformation

yi = exp zi , i = 1, . . . , n0

to the formulation (GGP1), we can obtain the following equivalent programming problem:

(GGP2) min f0(z)
s.t. fm(z) ≥ 0, m = 1, . . . , M,

z ∈ � = {z | zl
i = ln yl

i ≤ zi ≤ ln yu
i = zu

i <∞, i = 1, . . . , n0},

where fm(z) =
Tm∑
t=1

δmt exp(
n0∑

i=1
γmti zi ), m = 0, 1, . . . , M.

Next, we turn to consider the objective function of (GGP2). For convenience, for each m =
0, 1, . . . , M , we assume without loss of generality that δmt > 0 for t = 1, . . . , Jm , and
δmt < 0 for t = Jm + 1, . . . , Tm . Let

I+t = {i | γ0ti > 0, i = 1, . . . , n0}, I−t = {i | γ0ti < 0, i = 1, . . . , n0}.
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In addition, some notations are introduced as follows:

lt = min
z∈�

∑

i∈I+t

γ0ti zi =
∑

i∈I+t

γ0ti ln yl
i , t = J0 + 1, . . . , T0,

ut = max
z∈�

∑

i∈I+t

γ0ti zi =
∑

i∈I+t

γ0ti ln yu
i , t = J0 + 1, . . . , T0,

Lt = min
z∈�

∑

i∈I−t

γ0ti zi =
∑

i∈I−t

γ0ti ln yu
i , t = 1, . . . , J0,

Ut = max
z∈�

∑

i∈I−t

γ0ti zi =
∑

i∈I−t

γ0ti ln yl
i , t = 1, . . . , J0.

Then, by introducing an additional vector w = (w1, w2, . . . , wT0)
T ∈ RT0 , we can convert

the problem (GGP2) into

(GGP3) min
J0∑

t=1
δ0t exp

⎛

⎝ ∑

i∈I+t
γ0ti zi + wt

⎞

⎠+
T0∑

t=J0+1
δ0t exp

⎛

⎝ ∑

i∈I−t
γ0ti zi − wt

⎞

⎠ ,

s.t.
Jm∑

t=1
δmt exp

(
n0∑

i=1
γmti zi

)
+

Tm∑
t=Jm+1

δmt exp

(
n0∑

i=1
γmti zi

)
≥ 0, m = 1, . . . , M,

wt + ∑

i∈I−t
(−γ0ti )zi ≥ 0, t = 1, . . . , J0,

∑

i∈I+t
γ0ti zi + wt ≥ 0, t = J0 + 1, . . . , T0,

Lt ≤ wt ≤ Ut , t = 1, . . . , J0,

−ut ≤ wt ≤ −lt , t = J0 + 1, . . . , T0,

z ∈ �.

Note that the objective function of (GGP3) is increasing and each constrained function is
a d.m. function. The key equivalence result for problems (GGP2) and (GGP3) is given by
the following Theorem 1.

Theorem 1 If (z∗, w∗) is a global optimal solution for problem (GGP3), then z∗ is a global
optimal solution for problem (GGP2). Conversely, if z∗ is a global optimal solution for
problem (GGP2), then (z∗, w∗) is a global optimal solution for problem (GGP3), where,
w∗t =

∑

i∈I−t
γ0ti z∗i (t = 1, . . . , J0), w∗t = −

∑

i∈I+t
γ0ti z∗i (t = J0 + 1, . . . , T0).

Proof The proof of this theorem follows easily from the definitions of problems (GGP2) and
(GGP3), therefore, it is omitted. 
�

From Theorem 1, notice that, in order to globally solve problem (GGP2), we may globally
solve problem (GGP3) instead. In addition, it is easy to see that the global optimal values of
problems (GGP2) and (GGP3) are equal.

In addition, for the sake of simplicity, let x = (z, w) ∈ Rn0+T0 with z ∈ Rn0 , w ∈ RT0

and let n = n0 + T0, then, without loss of generality, by changing the notation, the problem
(GGP3) can be rewritten as the form

(P) min{g(x) | h(x) ≥ 0, x ∈ X0 = [xl , xu]},

123



J Glob Optim (2008) 41:593–612 597

where

X0 = {x ∈ Rn | xl
i ≤ xi ≤ xu

i , i = 1, . . . , n}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣

zl
i ≤ xi = zi ≤ zu

i , i = 1, . . . , n0,

Li−n0 ≤ xi = wi−n0 ≤ Ui−n0 , i = n0 + 1, . . . , n0 + J0,

−ui−n0−J0 ≤ xi = wi−n0−J0 ≤ −li−n0−J0 ,

i = n0 + J0 + 1, . . . , n0 + T0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

and g(x) is an increasing function:

g(x) =
J0∑

t=1

δ0t exp

⎛

⎝
∑

i∈I+t

γ0ti xi + xn0+t

⎞

⎠+
T0∑

t=J0+1

δ0t exp

⎛

⎝
∑

i∈I−t

γ0ti xi − xn0+t

⎞

⎠ , (1)

while

h(x) = min
k=1,...,k0

{uk(x)− vk(x)}, k0 = M + T0, (2)

with uk(x), vk(x) being increasing functions such that

uk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Jk∑
t=1

δkt exp

(
n0∑

i=1
γkti xi

)
, k = 1, . . . , M,

∑

i∈I−t
(−γ0ti )xi + xn0−M+k, t = k − M, k = M + 1, . . . , M + J0,

∑

i∈I+t
γ0ti xi + xn0−M+k , t = k − M, k = M + J0 + 1, . . . , k0,

(3)

and

vk(x) =

⎧
⎪⎨

⎪⎩

Tk∑
t=Jk+1

(−δkt ) exp

(
n0∑

i=1
γkti xi

)
, k = 1, . . . , M,

0, k = M + 1, . . . , k0.

(4)

Based on the above discussion, here, from now on we assume that the original problem
(GGP) has been converted to the problem (P), with g(x) increasing and h(x) defined as in
(1)–(4), then a robust algorithm will be considered for the problem (P).

3 Essential optimization solution

An isolated optimal solution even if computable is often difficult to implement practically
because of its instability under small perturbations of the constraints. Therefore, for solving
problem (P) we only consider nonisolated feasible solutions of (P) from a practical point of
view. This motivates the following definitions (see [15]).

A nonisolated feasible solution x∗ of (P) is called an essential optimal solution if g(x∗) ≤
g(x) for all nonisolated feasible solutions x of (P), i.e. if

g(x∗) = min{g(x) | x ∈ X∗0},
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where X∗0 denotes the set of all nonisolated feasible solutions of (P). Assume

{x ∈ X0 | h(x) > 0} �= ∅. (5)

For ε ≥ 0, an x ∈ X0 satisfying h(x) ≥ ε is then called an ε-essential feasible solution, and
a nonisolated feasible solution x of (P) is called an essential ε-optimal solution if it satisfies

g(x)− ε ≤ inf{g(x) | h(x) ≥ ε, x ∈ X0}. (6)

Clearly for ε = 0, a nonisolated feasible solution which is essentially ε-optimal is optimal.
The search for an essential ε-optimal solution of (P) can be achieved by the following

approach: start from an initial essential feasible solution (the best so far known), find a better
essential feasible solution, then reiterate the operation until an evidence is obtained that no
better feasible solution than the current best exists. Next, we will show how this approach is
formed.

Let X = [a, b] be any subrectangle of X0, and U B be the objective function value of the
best so far essential feasible solution x0 ∈ X to problem (P)(of course U B ≤ g(b)). Given an
ε > 0, we want to find a nonisolated feasible solution x ∈ X of (P) such that g(x) ≤ U B−ε,
or else establish that none such x exists.

Clearly, if g(a) ≥ U B − ε, then, since g is increasing, g(x) ≥ U B − ε, ∀x ∈ X , so there
is no x ∈ X with g(x) < U B − ε. If g(a) < U B − ε and h(a) > 0, then a is an essential
feasible solution with objective function value less than U B− ε. Therefore, we shall assume
without loss generality that

h(a) ≤ 0, g(a) < U B − ε. (7)

Under this assumption, we consider the following auxiliary problem

(P1) max{h(x) | g(x) ≤ U B − ε, x ∈ X = [a, b]}.
Since the function h(x) is continuous and

{x ∈ X | g(x) ≤ U B − ε} = cl{x ∈ intX | g(x) < U B − ε},
it is clear that the problem (P1) is regular (see [15]).

The optimal values of (P) and (P1) are denoted by min(P) and max(P1), respectively. Then
the key results for (P) and (P1) are given as follows:

Theorem 2 Under assumptions (5) and (7):

(i) If h(x̃) > 0, where x̃ is a feasible solution of (P1), then x̃ is a nonisolated feasible
solution of (P) with g(x̃) ≤ U B − ε. In particular, if max(P1) = h(x ′) > 0, then x ′
is a nonisolated feasible solution of (P) with g(x ′) ≤ U B − ε.

(ii) Let x̂ is some nonisolated feasible solution of (P). If max(P1) < ε and g(x̂) = U B,
then x̂ is an essential ε-optimal solution of (P). If max(P1) < ε and U B = g(xu)+ε,
then the problem (P) has no nonisolated feasible solution.

Proof
(i) Since h(a) ≤ 0 < h(x̃), we have x̃ �= a and every x = a + λ(x̃ − a) with 0 ≤ λ ≤ 1

satisfies a ≤ x ≤ x̃ . Then, for every λ sufficiently close to 1, i.e. every x suffi-
ciently close to x̃ , we have h(x) > 0, so x is a feasible solution of (P). Furthermore,
g(x̃) ≤ U B − ε because x̃ is feasible to (P1). Therefore, x̃ is a nonisolated feasible
solution of (P) satisfying g(x̃) ≤ U B − ε.
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(ii) If max(P1) < ε then

sup{h(x) | g(x) ≤ U B − ε, x ∈ X} < ε,

so for every x ∈ X satisfying h(x) ≥ ε, we must have g(x) > U B − ε = g(x̂) − ε.
Therefore,

inf{g(x) | h(x) ≥ ε, x ∈ X0} ≥ inf{g(x) | h(x) ≥ ε, x ∈ X} ≥ g(x̂)− ε.

This means that, x̂ is an essential ε-optimal solution of (P).
If U B = g(xu)+ε, then {x ∈ X0 | h(x) ≥ ε} = ∅, i.e. the problem (P) has no nonisolated

feasible solution, and the proof is complete. 
�

Since g(x) is continuous and increasing, the problem (P1) is regular (i.e. it has no isolated
feasible point). Therefore, solving (P1) is simpler than solving the original problem (P) from
a robust optimal point of view. Furthermore, Theorem 2 gives some valuable information, that
is, under assumptions (5) and (7), by solving (P1) we can know whether or not an essential
feasible solution x of (P) exists such that g(x) ≤ U B − ε. Thus, for solving the problem (P)
we need consider the problem (P1) in the following.

4 Basic operations

In order to solving the problem (P1), a robust approach will be proposed for finding the
globally optimal solution of (P1). The main idea of this approach consists of several basic
operations: successively refined partitioning of the feasible set; estimation of upper bound
for the optimal value of the objective function over each subset generated by the partitions;
and the reduction operation by reducing the size of each partition subset without losing any
feasible solution currently still of interest. Next, we begin the establishment of the approach
with the basic operations needed in a branch-and-bound scheme.

4.1 Rectangular partition

To present partition operation, at each iteration of a branch-and-bound algorithm to be pre-
sented, assume without loss of generality that a subrectangle of X0 to be subdivided is
X = (X j )n×1 = [a, b] with X j = [a j , b j ]. The branching rule is as follows:

(i) Choose a longest edge among the edges of the rectangle X = X1 × X2 × · · · × Xn .

(ii) Let X j denote the rectangle containing the chosen longest edge.
(iii) Let ω denote the midpoint of this edge.
(iv) X is subdivided into two subrectangles X1 and X2 of equal volume, where X1 =

X1 × X2 × · · · × X j × · · · × Xn , X2 = X1 × X2 × · · · × X j × · · · × Xn , and

X j = [a j , ω], X j = [ω, b j ].
It follows easily that the branching process is exhaustive, i.e., if Xq denotes a nested

sequence of rectangles (i.e. Xq+1 ⊂ Xq , for all q) formed by the branching process, then for
some unique point x ∈ Rn ,

⋂

q

Xq = {x}.
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4.2 Upper bound

For each rectangle X ⊆ X0, we intend to compute an upper bound V [P1(X )] of the optimal
value of (P1) over X . Therefore, We will first generalize an equivalent problem of (P1).

By introducing a new variable xn+1, the problem (P1) is equivalent to the following
problem:

(P2) max{xn+1 | xn+1 ≤ uk(x)− vk(x) (k = 1, . . . , k0), g(x) ≤ U B − ε, x ∈ X}.
Our main method for computing an upper bound V [P1(X )] over X ⊆ X0 is to solve the
linear relaxation programming of (P2) by using the following linearization technique.

The linear relaxation of the problem (P2) can be realized by underestimating every func-
tion vk(x) and g(x), and by upper-estimating every function uk(x), for each k = 1, . . . , M .
All the details of this linearization technique for generating the linear relaxation will be given
in the following Theorem 3.

For any X = (xi )n×1 = [a, b] ⊆ X0 with xi = [ai , bi ] and ∀x ∈ X , for simplicity, we
denote

X0t =

⎧
⎪⎨

⎪⎩

∑

i∈I+t
γ0ti xi , t = 1, . . . , J0,

∑

i∈I−t
γ0ti xi , t = J0 + 1, . . . , T0,

Xl
0t =

⎧
⎪⎨

⎪⎩

∑

i∈I+t
γ0ti ai , t = 1, . . . , J0,

∑

i∈I−t
γ0ti bi , t = J0 + 1, . . . , T0,

Xu
0t =

⎧
⎪⎨

⎪⎩

∑

i∈I+t
γ0ti bi , t = 1, . . . , J0,

∑

i∈I−t
γ0ti ai , t = J0 + 1, . . . , T0,

Xkt =
n∑

i=1

γkti xi , t = 1, . . . , Tk,

Xl
kt =

n∑

i=1

γkti ai , t = 1, . . . , Tk,

Xu
kt =

n∑

i=1

γkti bi , t = 1, . . . , Tk,

where k = 1, . . . , M . In addition, let

Akt = exp(Xu
kt )− exp(Xl

kt )

Xu
kt − Xl

kt

,

ϕkt (x) = exp(Xkt ),

ϕkt (x) = exp(Xl
kt )+ Akt (Xkt − Xl

kt ),

ϕ
kt

(x) = Akt (1+ Xkt − ln Akt ),

where k = 0, 1, . . . , M, t = 1, . . . , Tk .

Theorem 3 Consider the functions ϕkt (x), ϕkt (x) and ϕ
kt

(x), for any x ∈ X, where k =
0, 1, . . . , M and t = 1, . . . , Tk. Then the following two statements are valid.
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(i) The function ϕkt (x) is the (affine) concave envelope of the function ϕkt (x) over X,
and the function ϕ

kt
(x) is a supporting hyperplane of ϕkt (x), which is parallel with

ϕkt (x). Moreover, the functions ϕkt (x), ϕkt (x) and ϕ
kt

(x) satisfy

ϕ
kt

(x) ≤ ϕkt (x) ≤ ϕkt (x),∀x ∈ X.

(ii) The differences of ϕkt (x) and ϕkt (x), ϕkt (x) and ϕ
kt

(x) satisfy maxx∈X�1
kt (x) =

maxx∈X�2
kt (x) = exp(Xl

kt )(1− Zkt + Zkt lnZkt )→ 0 as ωkt → 0, where

�1
kt (x) = ϕkt (x)− ϕkt (x), �2

kt (x) = ϕkt (x)− ϕ
kt

(x),

ωkt = Xu
kt − Xl

kt , zkt = exp(ωkt )−1
ωkt

.

Proof The proof is similar to Theorem 1 in Ref. [13], it is omitted here. 
�

Remark From Theorem 3, we can follow that the functions ϕkt (x) and ϕ
kt

(x) enough
approximate the function ϕkt (x) as ωkt → 0, respectively.

Next, we will give the relaxation linear functions of uk(x), vk(x) and g(x) over X . From
Theorem 3, it is obvious that for all x ∈ X we have

uk(x) ≤ uk(x) =
Jk∑

t=1

δktϕkt (x),

vk(x) ≥ vk(x) =
Tk∑

t=Jk+1

(−δkt )ϕkt
(x),

where k = 1, . . . , M and

g(x) ≤ g(x) ≤ g(x),

where

g(x) =
J0∑

t=1

δ0tϕ0t
(x)+

T0∑

t=J0+1

δ0tϕ0t (x),

g(x) =
J0∑

t=1

δ0tϕ0t (x)+
T0∑

t=J0+1

δ0tϕ0t
(x).

Consequently, we obtain the following linear program (LP2) in (x, xn+1) as a linear relaxation
of (P2) over the partition set X :

(LP2) max xn+1

s.t. xn+1 ≤ uk(x)− vk(x), k = 1, . . . , M,

xn+1 ≤ uk(x)− vk(x), k = M + 1, . . . , k0,

g(x) ≤ U B − ε,

x ∈ X.

An important property of (LP2)(X) is that its optimal value V [LP2(X )] satisfies:

max{h(x) | g(x) ≤ U B − ε, x ∈ X} ≤ V [LP2(X)],
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thus the optimal value of (LP2) provides a valid upper bound for the globally optimal value
of (P1) over X . However, for a better performance of the upper bound procedure, we can use
any tight bound available. For instance, the following procedure may give a better bound.

Theorem 4
(i) If h(a) ≥ 0 and g(a) ≤ U B − ε then the point a is a nonisolated feasible solution with

g(a) ≤ U B − ε.
(ii) If g(b) > U B−ε and z(X) = a+θ(b−a), where θ satisfies g(a+θ(b−a)) = U B−ε,

and ρi = b + (zi (X) − bi )ei , i = 1, . . . , n, then an upper bound of h(x) over all
x ∈ [a, b] satisfying g(x) ≤ U B − ε is

β(X) = max
i=1,...,n

min
k=1,...,k0

{uk(ρ
i )− vk(a)}. (8)

Proof (i) Obvious. (ii) Let

Xi = [a, ρi ] = {x | a ≤ x ≤ ρi } = {x ∈ [a, b] | ai ≤ xi ≤ zi (X)}.

�

The function g(x) is increasing and from assumption (7) it follows that g(a) ≤ U B−ε <

g(b), therefore 0 ≤ θ < 1 and g(z(X)) = U B − ε. From the definitions of z(X) and g(x)

it is clear that g(x ′) > g(z(X)) = U B − ε for all x ′ = a + ξ(b − a) with ξ > θ . Since for
each x > z(X) there exists x ′ = a + ξ(b − a) with ξ > θ , such that x ≥ x ′, it follows that
g(x) ≥ g(x ′) > U B − ε. Let G = {x ∈ [a, b] | g(x) ≤ U B − ε}, K = {x | z(X) < x ≤ b},
and Ki = {x ∈ [a, b] | xi > zi (X)}. Then

G ⊂ [a, b] \ K = [a, b] \ ∩n
i=1 Ki = ∪n

i=1{x ∈ [a, b] | ai ≤ xi ≤ zi (X)} = ∪n
i=1 Xi .

Since β(Xi ) ≥ max{h(x) | x ∈ Xi }, it follows that

β(X) = max{β(Xi ) | i = 1, . . . , n}
≥ max{h(x) | x ∈ ∪n

i=1 Xi }
≥ max{h(x) | g(x) ≤ U B − ε, x ∈ [a, b]}.


�

Based on the above discussion, for any rectangle X ⊂ X0, in order to obtain an upper
bound V [P1(X )] of the optimal value of the problem:

(P1) max{h(x) | g(x) ≤ U B − ε, x ∈ X},
we may compute V [P1(X)] such that

V [P1(X)] = min{V [LP2(X)], β(X)}, (9)

where V [LP2(X)] is the optimal value of (LP2)(X). Clearly, V [P1(X)] satisfies:

max{h(x) | g(x) ≤ U B − ε, x ∈ X} ≤ V [P1(X)] ≤ β(X). (10)

More generally, we shall show in the next section that any upper bound V [P1(X)] satisfying
(10) ensures convergence of the algorithm.
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4.3 Reduction operation

According to the above discussion, the upper bound of the optimal value of (P1) can be
calculated by solving the linear relaxation problem (LP2) of (P2) and β(X) (see (8)) inside
some rectangle defined by

X = (Xi )n×1 = [a, b] ⊆ X0 with Xi = [ai , bi ].
Clearly, the smaller this rectangle X , the tighter the upper bound V [P1(X)] of (P1), and
therefore the closer the feasible solution of (P) will be to the essential ε-optimal solution
of (P). To show this, the next results give a reduction operation to reduce the size of this
partitioned rectangle without losing any feasible solution currently still of interest.

The reduction operation is based on special cuts that exploit the monotonic structure of the
problem. At a given stage of the branch-and-bound algorithm for (P1), let X = [a, b] ⊂ X0

be a rectangle generated during the partitioning procedure and still of interest. The search for
a nonisolated feasible solution of (P) in [a, b] such that g(x) ≤ U B−ε can then be restricted
to the set M ∩ [a, b], where

M := {x | g(x) ≤ U B − ε, h(x) ≥ 0}. (11)

Since h(x) = min
k=1,...,k0

{uk(x)− vk(x)} with uk(x), vk(x) being increasing functions (see

(2)–(4)), we can also write

M = {x | g(x) ≤ U B − ε, uk(x)− vk(x) ≥ 0, k = 1, . . . , k0}.
The reduction operation aims at replacing the rectangle [a, b] with a smaller rectangle

[a′, b′] ⊂ [a, b] without losing any point x ∈ M ∩ [a, b], i.e. such that M ∩ [a′, b′] =
M∩[a, b]. The rectangle [a, b] satisfying this condition is denoted by red[a, b]. For this pur-
pose, let us first give the following rules (A) and (B) used to constructαi

k andβ i
k (i = 1, . . . , n),

and let ei denote the i th unit vector, i.e. a vector with 1 at the i th position and 0 everywhere
else, then red[a, b] is derived in Theorem 5 below.
Rule (A) For each k = 1, . . . , k0, if the function uk(b − α(bi − ai )ei ) is not a constant in
single variable α and there exists some αi

k ∈ (0, 1) such that αi
k is a root of the equation

uk(b − α(bi − ai )e
i ) = vk(a),

then let αi
k = αi

k , otherwise, let αi
k = 1.

Rule (B) For each k = 1, . . . , k0, k0 + 1, if there exists some β
i
k ∈ (0, 1) such that either β

i
k

is a root of the equation

vk(a
′ + β(bi − a′i )ei ) = uk(b), f or k ∈ {1, . . . , k0},

with the function vk(a′ + β(bi − a′i )ei ) not being a constant in single variable β, or β
i
k

satisfies

g(a′ + β
i
k(bi − a′i )ei ) = U B − ε, f or k = k0 + 1,

and the function g(a′ +β(bi −a′i )ei ) is not a constant in single variable β, then let β i
k = β

i
k ,

otherwise, let β i
k = 1.
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Theorem 5
(i) If g(a) > U B − ε, or min

k=1,...,k0
{uk(b) − vk(a)} < 0, then M ∩ [a, b] = ∅, i.e.

red[a, b] = ∅.
(ii) If g(a) ≤ U B − ε, and min

k=1,...,k0
{uk(b)− vk(a)} ≥ 0, then red[a, b] = [a′, b′] with

a′ = b −
n∑

i=1

min
k=1,...,k0

{αi
k} · (bi − ai )e

i

and

b′ = a′ +
n∑

i=1

min
k=1,...,k0+1

{β i
k} · (bi − ai )e

i ,

where αi
k and β i

k are defined in Rule (A) and Rule (B), for each i = 1, . . . , n.

Proof

(i) If g(a) > U B−ε, then g(x) ≥ g(a) > U B−ε for every x ∈ [a, b]. If min
k=1,...,k0

{uk(b)−
vk(a)} < 0, then

min
k=1,...,k0

{uk(x)− vk(x)} ≤ min
k=1,...,k0

{uk(b)− vk(a)} < 0,

for every x ∈ [a, b]. In both cases, M ∩ [a, b] = ∅.
(ii) Given any x = (x1, . . . , xi , . . . , xn)T ∈ [a, b] satisfying uk(x) ≥ vk(x), k = 1, . . . , k0

and g(x) ≤ U B − ε. Let

αi
k′ � min

k=1,...,k0
{αi

k}, β i
k′′ � min

k=1,...,k0+1
{β i

k}, i = 1, . . . , n. (12)

We first show that x ≥ a′ below. Suppose that x � a′, then there exists some i such that

xi < a′i = bi − αi
k′(bi − ai ), i.e. xi = bi − α(bi − ai ) with α > αi

k′ . (13)

By the definition of αi
k′ , we consider the following two cases.

Case 1 If αi
k′ = 1, then, from (13) we have xi < a′i = bi − αi

k′(bi − ai ) = ai , conflicting
with x ∈ [a, b].

Case 2 If 0 < αi
k′ < 1, from Rule (A) and the definition of αi

k′ , we can imply that

uk′(b − αi
k′(bi − ai )e

i ) = vk′(a). (14)

In addition, by using Rule (A) and the definition of uk(x), we have uk′(b− α(bi − ai )ei ) is
strictly decreasing in single variable α. Then, it follows from (13) and (14) that

uk′(b − (bi − xi )e
i ) = uk′(b − α(bi − ai )e

i ) < uk′(b − αi
k′(bi − ai )e

i ) = vk′(a).

Hence

uk′(x) ≤ uk′(b − (bi − xi )e
i ) < vk′(a) ≤ vk′(x) with xi = bi − α(bi − ai ),

conflicting with uk′(x)− vk′(x) ≥ 0.
Based on the above results, in either case we have x ≥ a′, i.e. x ∈ [a′, b].
Similarly, we also can show that x ≤ b′. Suppose that x � b′, then there exists some i

such that

xi > b′i = a′i + β i
k′′(bi − a′i ), i.e. xi = a′i + β(bi − a′i ) with β > β i

k′′ . (15)
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By the definition of β i
k′′ , we consider two cases as follows.

Case 1 If β i
k′′ = 1, then from (15), xi > b′i = a′i + β i

k′′(bi − a′i ) = bi , conflicting with
x ∈ [a, b].

Case 2 If 0 < β i
k′′ < 1, then, from Rule (B) and the definition of β i

k′′ , we can imply

vk′′(a
′ + β i

k′′(bi − a′i )ei ) = uk′′(b) (16)

or

g(a′ + β i
k′′(bi − a′i )ei ) = U B − ε. (17)

Assume that (16) holds. From Rule (B) and the definition of vk(x), we have vk′′(a′ +
β(bi − a′i )ei ) is strictly increasing in single variable β. From (15) and (16), it follows that

vk′′(a
′ + (xi − a′i )ei ) = vk′′(a

′ + β(bi − a′i )ei ) > vk′′(a
′ + β i

k′′(bi − a′i )ei ) = uk′′(b),

and hence

vk′′(x) ≥ vk′′(a
′ + (xi − a′i )ei ) > uk′′(b) ≥ uk′′(x) with xi = a′i + β(bi − a′i ).

This conflicts with uk′′(x) ≥ vk′′(x).
Assume that (17) holds. From Rule (B) and the definition of g(x), it is clear that g(a′ +

β(bi − a′i )ei ) is a strictly increasing function in single variable β. Then by (15) and (17), we
can deduce

g(a′ + (xi − a′i )ei ) = g(a′ + β(bi − a′i )ei ) > g(a′ + β i
k′′(bi − a′i )ei ) = U B − ε,

which means that

g(x) > g(a′ + (xi − a′i )ei ) > U B − ε with xi = a′i + β(bi − a′i ).

This conflicts with g(x) ≤ U B − ε.
From the above proof results, in either case we must have x ≤ b′, i.e. x ∈ [a′, b′], and the

proof is complete. 
�

Remark 1 In order to obtain red[a, b], in computation of αi
k′ and β i

k′′ , the form of (12) is
more easily implementable than (9) and (10) in Ref. [18]. This is because the later is com-
puted by solving the nonlinear nonconvex programming, but the former involve in solving
the roots of several nonlinear or linear equations in a single variable. And the construct of
these equations is similar, so their roots are obtained easily by a likewise computing fashion.

Remark 2 It can easily be verified, the rectangle [a, b] = red[a, b] still satisfies

g(a′) ≤ U B − ε, min
k=1,...,k0

{uk(b
′)− vk(a

′)} ≥ 0.

5 Algorithm and its convergence

Based on the previous basic operations in Sect. 4, a robust solution algorithm is presented
for solving (P). The basic steps of the algorithm are summarized in the following statement.

Algorithm statement
Step 0 Given convergence tolerance ε > 0. If no feasible solution is known, let U B =

g(xu) + ε with X0 = [xl , xu]; otherwise, let x̂ be the best nonisolated feasible solution
available, U B = g(x̂). Let Q0 = {X0}, F0 = ∅. Set q = 0.
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Step 1 For each rectangle X ∈ Qq , compute red X , i.e. the remainder of X , which we
can obtain by using the reduction operation. Then, delete X if red X = ∅; or replace X by
red X if red X = [a′, b′] �= ∅, and compute an upper bound V [P1(X)] defined in (9) for
h(x) over the feasible solutions in X and delete X if V [P1(X)] < 0.

Step 2 Let Q′q be the collection of rectangles that results from Qq after completion of
Step 1. Let F ′q = Fq ∪ Q′q .

Step 3 If F ′q = ∅ then terminate: x̂ is an ε-optimal solution of (P) if U B = g(x̂), or the
problem (P) is infeasible if U B = g(xu)+ ε.

Step 4 If F ′q �= ∅, then let [aq , bq ] := Xq ∈argmax{V [P1(X)] | X ∈ F ′q}, and let
V [P1]q = V [P1(Xq)].

Step 5 If V [P1]q < ε, then terminate: x̂ is an essential ε-optimal solution of (P) if
U B = g(x̂), or the problem (P) is ε-essentially infeasible if U B = g(xu)+ ε.

Step 6 If V [P1]q ≥ ε, and g(bq) > U B − ε, compute xq = aq + γq(bq − aq) with
γq satisfying g(aq + γq(bq − aq)) = U B − ε. If V [P1]q ≥ ε, and g(bq) ≤ U B − ε, let
xq = aq .

(6.1) If h(xq) ≥ 0 then xq is a new nonisolated feasible solution of (P) with g(xq) ≤
U B − ε: if h(aq) ≥ 0, reset x̂ ← aq , U B ← g(x̂). Go to Step 7.

(6.2) If h(xq) < 0, go to Step 7, with x̂ unchanged.
Step 7 Divided Xq into two subrectangles by the branching process. Let Qq+1 be the

collection of these two subrectangles of Xq , Fq+1 = F ′q+1\{Xq}. Increment q , and return to
Step 1.
The convergence of the proposed algorithm is given as follows.

Theorem 6 (Convergence result) The above algorithm terminates after finitely many steps,
yielding either an essential ε-optimal solution of (P), or an evidence that the problem is
essentially infeasible.

Proof In Step 3, the event F ′q = ∅ implies that we cannot find any feasible solution x with
g(x) ≤ U B − ε = g(x̂) − ε, hence the conclusion in Step 3 is correct. If V (P1)q < ε,
then max(P1) < ε (see (10)), hence by Theorem 2, the same conclusion in Step 5. Observe
that in Step 6, the point xq exists and satisfies g(xq) = U B − ε, so if h(xq) ≥ 0, then xq

is a nonisolated feasible solution with g(xq) ≤ g(x̂) − ε, justifying Step (6.1). Thus the
conclusion is correct if one of the following events occurs:

F ′q = ∅, V [P1]q < ε, h(xq) > 0.

It remains to show that at least one of these events must occur, i.e. that for sufficiently large
k Steps 6 and 7 cannot occur. To this end, suppose now that the algorithm is infinite. Since
each occurrence of Step (6.1) decreases the current best value at least by ε > 0 while g(x) is
bounded below it follows that Step (6.1) cannot occur infinitely often. Consequently, for all q
sufficiently large, x̂ is unchanged, and h(xq) ≤ 0, while V [P1]q ≥ ε. But, as q −→∞, we
have, by exhaustiveness of the subdivision, diam Xq −→ 0, i.e. ‖bq − aq‖ −→ 0. Denote
by x̃ the common limit of bq and aq as q −→∞. Since

ε ≤ V [P1]q ≤ min
k=1,...,k0

[uk(b
q)− vk(a

q)],
it follows that

ε ≤ lim
q−→+∞ V [P1]q ≤ min

k=1,...,k0
[uk(x̃)− vk(x̃)] = h(x̃).

But by continuity, h(x̃) = lim
q−→+∞ h(xq) ≤ 0, a contradiction. Therefore, the algorithm must

be finite, and the proof is complete. 
�
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6 Numerical results

We now report some numerical examples to verify the performance of the proposed algo-
rithm. All test problems were implemented on a Pentium (R) 4 CPU 2.66 GHz with 512 MB
memory microcomputer. Some computational results are summarized in Tables 1 and 2 to
show the potential and feasibility of the proposed algorithm, compared with other existing
methods, such as linear relaxation.

To illustrate how the proposed robust algorithm works, we first give a simple example to
show the solving procedure of the proposed algorithm. Furthermore, this example is meant
to show that by using V [P1(X)] = min{V [LP2(X)], β(X)} (see (9)) one could compute an
upper bound as tight as we wish.

Example 1 (See [18,19])

min y0.8
3 y1.2

4
s . t . y1 y−1

4 + y−1
2 y−1

4 ≤ 1,

−y−2
1 y−1

3 − y2 y−1
3 ≤ 1,

0.1 ≤ y1 ≤ 1 , 5 ≤ y2 ≤ 10 , 8 ≤ y3 ≤ 15 , 0.01 ≤ y4 ≤ 1.

First, let xi = exp yi , i = 1, 2, 3, 4, we transform the above problem into the form:

(P) min{g(x) | h(x) ≥ 0, x ∈ X0 = [xl , xu]},
where,

g(x) = exp(0.8x3 + 1.2x4),
h(x) = min{exp(x2+ x4)− (exp(x1+ x2)+ 1), exp(2x1+ x3)+ exp(2x1+ x2)+ 1},
xl = (ln 0.1, ln 5, ln 8, ln 0.01),
xu = (ln 1, ln 10, ln 15, ln 1).

Give an ε > 0, and let U B be the best so far known upper bound of the optimal value of
g(x). Then, we consider the auxiliary problem over a partition set X ⊆ X0 as follows:

(P1) max{h(x) | g(x) ≤ U B − ε, x ∈ X = [a, b]}.
To compute an upper bound of the optimal value of (P1) over X , an additional variable

x5 is introduced, thus the problem (P1) is equivalent to the following problem:

(P2) max x5
s . t . x5 ≤ exp(x2 + x4)− (exp(x1 + x2)+ 1),

x5 ≤ exp(2x1 + x3)+ exp(2x1 + x2)+ 1,

exp(0.8x3 + 1.2x4) ≤ U B − ε,

x ∈ X.

Consequently, from Theorem 3, we can obtain the linear relaxation program (LP2) in
(x, x5) of the problem (P2) over the partition set X as follows:

max x5
s . t . x5 ≤ exp(a2 + a4)+ A1(x2 + x4 − (a2 + a4))− (A2(1+ x1 + x2 − ln A2)+ 1),

x5 ≤ exp(2a1 + a3)+ A3(2x1 + x3 − (2a1 + a3))+ exp(2a1 + a2)

+ A4(2x1 + x2 − (2a1 + a2))+ 1,

A5(1+ 0.8x3 + 1.2x4 − ln A5) ≤ U B − ε,

x ∈ X,
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where,

A1 = exp(b2 + b4)− exp(a2 + a4)

(b2 + b4)− (a2 + a4)
, A2 = exp(b1 + b2)− exp(a1 + a2)

(b1 + b2)− (a1 + a2)
,

A3 = exp(2b1 + b3)− exp(2a1 + a3)

(2b1 + b3)− (2a1 + a3)
, A4 = exp(2b1 + b2)− exp(2a1 + a2)

(2b1 + b2)− (2a1 + a2)
,

A5 = exp(0.8b3 + 1.2b4)− exp(0.8a3 + 1.2a4)

(0.8b3 + 1.2b4)− (0.8a3 + 1.2a4)
.

Then, by solving the linear program subproblem (LP2(X )), its optimal value V [LP2(X )]
can be obtained and is severed as a valid upper bound for the globally optimal value of (P1)
over X . In addition, Theorem 4 gives another upper bound β(X) for the problem (P1). There-
fore, in order to obtain a better upper bound V [P1(X )] of the optimal value of the problem
(P1), we compute V [P1(X)] such that V [P1(X)] = min{V [LP2(X)], β(X)} in Step 1 of the
proposed algorithm (see (9)).

Following the robust solution method, solving Example 1 with tolerance ε = 10−5, the
proposed algorithm yielded an essential ε-optimal solution

ŷ = (0.1000, 9.9999, 8.0000, 0.2000)

with objective function value 0.7651 at iteration 124, and confirmed its essential ε-optimality
at iteration 132. The computation required 1.484 s, and got the essential ε-optimal solution
through 34 cycles of incumbent transcending, with intermediate results for the first nine and
last nine cycles as given in Table 1.

(By cycle we mean a sequence of iterations required for transcending a given incumbent;
ŷ is the new incumbent found at the end of the cycle, and Iter indicates the iteration where ŷ
is found.)

Additionally, it has been observed that, when V [P1(X)] = β(X) is utilized as an upper
bound of the optimal value to problem (P1) (as defined in [15]), the computational cost of
Example 1 will be different from choosing V [P1(X)] = min{V [LP2(X)], β(X)}. Indeed,
if the linearization technique don’t be considered ( i.e. the linear programming (LP2) don’t
be used), then, with same ε = 10−5, the robust solution algorithm found the same essential
ε-optimal solution and essential ε-optimal value at iteration 156, and confirmed its essential
ε-optimality at iteration 175. The computation required 2.000 s on the same computer.

This illustrates that the linearization technique may improve the computational efficiency
and it may be necessary to the robust solution method.

Furthermore, we choose seven other examples to test our algorithm, which are all come
from the literature, and the computational results of some examples are listed in Table 2
below.

Example 2 (See [13,18,20])

min 0.5y1 y−1
2 − y1 − 5y−1

2
s . t . 0.01y2 y−1

3 + 0.01y2 + 0.0005y1 y3 ≤ 1,

70 ≤ y1 ≤ 150 , 1 ≤ y2 ≤ 30 , 0.5 ≤ y3 ≤ 21.

Example 3 (See [19])

min y0

s . t . 3.7y−1
0 y0.85

1 + 1.985y−1
0 y1 + 700.3y−1

0 y−0.75
2 ≤ 1,

0.7673y0.05
2 − 0.05y1 ≤ 1,

5 ≤ y0 ≤ 15 , 0.1 ≤ y1 ≤ 5 , 380 ≤ y2 ≤ 450.

123



J Glob Optim (2008) 41:593–612 609

Table 1 Numerical results for
Example1

Cycle ŷ g(ŷ) Iter

1 (0.200625,7.603680,11.70019,0.419761) 2.524389 3

2 (0.177828,7.071067,8.000000,0.392486) 1.718151 6

3 (0.100000,7.071068,8.000000,0.284826) 1.169413 7

4 (0.118704,8.830369,9.647354,0.251400) 1.169403 17

5 (0.123975,9.250108,8.996008,0.263391) 1.169393 18

6 (0.100000,7.351431,8.000000,0.244076) 0.971635 19

7 (0.118703,9.396957,8.785103,0.229307) 0.971625 22

8 (0.111344,9.617737,8.483395,0.234710) 0.971615 24

9 (0.100000,8.574048,8.000000,0.225942) 0.885665 25

· · · ·
· · · ·
· · · ·
26 (0.100000,9.995954,8.004320,0.200054) 0.765660 93

27 (0.100031,9.995127,8.001718,0.200095) 0.765650 96

28 (0.100000,9.995954,8.000000,0.200054) 0.765329 99

29 (0.100013,9.999154,8.001220,0.200031) 0.765319 108

30 (0.100000,9.998664,8.000000,0.200021) 0.765178 109

31 (0.100005,9.999482,8.000449,0.200011) 0.765168 121

32 (0.100005,9.999703,8.000365,0.200010) 0.765158 122

33 (0.100003,9.999786,8.000299,0.200009) 0.765148 123

34 (0.100000,9.999903,8.000000,0.200004) 0.765102 124

Example 4 (See [13,20])

min 168y1 y2 + 3651.2y1 y2 y−1
3 + 4× 104 y−1

4
s . t . 1.0425y1 y−1

2 ≤ 1,

3.5× 10−4 y1 y2 ≤ 1,

1.25y−1
1 y4 + 41.63y−1

1 ≤ 1,

40 ≤ y1 ≤ 44 , 40 ≤ y2 ≤ 45 , 60 ≤ y3 ≤ 70 , 0.1 ≤ y4 ≤ 1.4.

Example 5 (See [13,20])

min 5.3578y2
3 + 0.8357y1 y5 + 37.2392y1

s . t . 0.00002584y3 y5 − 0.00006663y2 y5 − 0.0000734y1 y4 ≤ 1,

0.000853007y2 y5 + 0.00009395y1 y4 − 0.00033085y3 y5 ≤ 1,

1330.3294y−1
2 y−1

5 − 0.42y1 y−1
5 − 0.30586y−1

2 y2
3 y−1

5 ≤ 1,

0.00024186y2 y5 + 0.00010159y1 y2 + 0.00007379y2
3 ≤ 1,

2275.1327y−1
3 y−1

5 − 0.2668y1 y−1
5 − 0.40584y4 y−1

5 ≤ 1,

0.00029955y3 y5 + 0.00007992y1 y3 + 0.00012157y3 y4 ≤ 1,

78.0 ≤ y1 ≤ 102.0 , 33.0 ≤ y2 ≤ 45.0 , 27 ≤ y3 ≤ 45.0,

27.0 ≤ y4 ≤ 45.0 , 27.0 ≤ y5 ≤ 45.0.
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Table 2 Computational results for test examples

No. Ref. Iter ε Optimal solution Optimal value

1 [ours] 132 10−5 (0.1000,9.9999,8.0000,0.2000) 0.7651

[18] 175 (0.1015,7.31972,8.0169,0.2395) 0.9514

[19] 171 (0.1358, 9.9324, 8.6973, 0.2365) 1.0000

2 [ours] 328 0.01 (150,30,4.9620) −147.6667

[13] 1829 (88.724706796,7.672652781,1.317862596) −83.2497 . . .

[18] 1754 (88.6274,7.9621,1.3215) −83.6898

[20] 1809 −83.2497 . . .

3 [ours] 6472 0.01 (12.0475,0.8167,444.9416) 12.0475

[19] 67 (11.9538,0.8150,445.1249) 11.9538

4 [ours] 968 0.1 (43.0473,44.9317,69.9359,1.1338) 4.6120× 105

[13] 2100 (43.0137. . ., 44.8148. . .,66.4239. . ., 1.1070. . .) 623249.876. . .

[20] 1717 623249.8752. . .

5 [ours] 122 0.1 (78.2135,33.2135,29.6588,44.757,37.6808) 1.008851× 104

[13] 341 (78, 32.9999. . ., 29.9957. . ., 45, 36.7753. . .) 10122.4931. . .

[20] 204 10122.3811. . .

In Table 2, the notations have been used for column headers: No.: number; Ref.: reference;
Iter: number of algorithm iteration.

Example 6 (See [21])

min x12(12.626260− 1.231059x1)+ x13(12.626260− 1.231059x2)

+x14(12.626260− 1.231059x3)+ x15(12.626260− 1.231059x4)

+x16(12.626260− 1.231059x5)

s . t . x12 − x11 ≤ 0, x11 − x12 ≤ 50, x10 − x4 ≤ 0, x9 − x10 ≤ 0,

x8 − x9 ≤ 0, 2x7 − x1 ≤ 1, x3 − x4 ≤ 0, x2 − x3 ≤ 0, x1 − x2 ≤ 0,

x4x16 − 50x4 − x5x16 ≤ −450,

50x4 + x5x16 + x10x15 − 50x10 − x4x15 − x4x16 ≤ 0,

50x10 + x4x15 + x9x14 − 50x9 − x3x14 − x8x15 ≤ 0,

50x8 + 50x9 + x3x14 + x8x13 − x2x13 − x9x14 ≤ 500,

50x7 + x2x13 + x7x12 − 50x8 − x1x12 − x8x13 ≤ 0,

50x8 + x1x12 + x8x13 − 50x7 − x2x13 − x7x12 ≤ 0,

x6x11 + x1x12 − x7x11 − x6x12 ≤ 0,

100x6 + 0.0975x2
1 − 3.475x1 − 9.75x1x6 ≤ 0,

100x7 + 0.0975x2
2 − 3.475x2 − 9.75x2x7 ≤ 0,

100x8 + 0.0975x2
3 − 3.475x3 − 9.75x3x8 ≤ 0,

100x9 + 0.0975x2
4 − 3.475x4 − 9.75x4x9 ≤ 0,

100x10 + 0.0975x2
5 − 3.475x5 − 9.75x5x10 ≤ 0,

(1, 1, 9, 9, 9, 1, 1, 1, 1, 1, 50, 0, 1, 50, 50, 0) ≤ x,

x ≤ (8.037732, 9, 9, 9, 9, 1, 4.518866, 9, 9, 9, 100, 50, 50, 50, 50, 0).
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By using a well devised branch and cut algorithm in Ref. [? ], with ε = η = 10−5, an
(ε, η)− approximate optimal solution was given as

x∗ = (8.03773, 8.161, 9, 9, 9, 1, 1.07026, 1.90837,

1.90837, 1.90837, 50.5042, 0.504236, 7.26387, 50, 50, 0)

with objective function value 174.788. However, in this paper, with ε = 10−5, the robust
solution algorithm found the essential ε-optimal solution

x̂ = (8.037732, 9, 9, 9, 9, 1, 1, 1.15686274509804,

1.15686274509804, 1.15686274509804, 50, 0, 1, 50, 50, 0)

with objective function value 156.219629 at iteration 3.

Example 7 (See [21])

min (3+ x1x3)(x1x2x3x4 + 2x1x3 + 2)2/3

s . t . −3(2x1x2 + 3x1x2x4)(2x1x3 + 4x1x4 − x2)

−(x1x3 + 3x1x2x4)(4x3x4 + 4x1x3x4 + x1x3 − 4x1x2x4)
1/3

+ 3(x4 + 3x1x3x4)(3x1x2x3 + 3x1x4 + 2x3x4 − 3x1x2x4)
1/4 ≤ −309.219315,

−2(3x3 + 3x1x2x3)(x1x2x3 + 4x2x4 − x3x4)
2

+ (3x1x2x3)(3x3 + 2x1x2x3 + 3x4)
4 − (x2x3x4 + x1x3x4)(4x1 − 1)3/4

−3(3x3x4 + 2x1x3x4)(x1x2x3x4 + x3x4 − 4x1x2x3 − 2x1)
4 ≤ −78243.910551,

−3(4x1x3x4)(2x4 + 2x1x2 − x2 − x3)
2

+ 2(x1x2x4 + 3x1x3x4)(x1x2 + 2x2x3 + 4x2 − x2x3x4 − x1x3)
4 ≤ 9618,

0 ≤ xi ≤ 5, i = 1, 2, 3, 4.

With ε = 0.1 the essential ε-optimal solution was found as

x̂ = (4.99671032804590, 0.02158432903879, 0.04460296046798, 4.99584081114434)

with objective function value 5.88861758106183 at iteration 12097.

Example 8 (See [21])

min 4(x2
1 x3 + 2x2

1 x2x2
3 x5 + 2x2

1 x2x3)(5x2
1 x3x2

4 x5 + 3x2)
3/5

+ 3(2x2
4 x2

5 )(4x2
1 x4 + 4x2x5)

5/3

s . t . −2(2x1x5 + 5x2
1 x2x2

4 x5)(3x1x4x2
5 + 5+ 4x3x2

5 )1/2 ≤ −7684.470329,

2(2x1x2
2 x3x2

4 )(2x1x2x3x2
4 + 2x2x2

4 x5 − x2
1 x2

5 )3/2 ≤ 1286590.314422,

0 ≤ xi ≤ 5, i = 1, 2, 3, 4, 5.

With ε = 0.1, the robust solution algorithm found the essential ε-optimal solution

x̂ = (4.99290412514017, 4.99136112876356, 0.14607278644884,

1.17375845734759, 0.95455337948153)

with objective function value 28745.10753904065 at iteration 12014.
From the above computational results, we can obtain that solving all of the problems

by the robust solution algorithm in this paper yields the essential ε-optimal solutions with
much better objective function values and being feasible. In addition, it is observed that, in
the example 3, the computational solution y∗ = (11.9538, 0.8150, 445.1249) of Ref. [19]
doesn’t satisfy the constraint 0.7673y0.05

2 − 0.05y1 ≤ 1, i.e. y∗ is infeasible, but our solution
is feasible. This illustrates the potential advantage of the robust solution approach: not only
a robust solution is obtained, less computational effort may be required for reaching a better
objective function value.
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